Characterizations of Subnormal Matrices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Characterizations of K-matrices

We present a number of combinatorial characterizations of Kmatrices. This extends a theorem of Fiedler and Pták on linearalgebraic characterizations of K-matrices to the setting of oriented matroids. Our proof is elementary and simplifies the original proof substantially by exploiting the duality of oriented matroids. As an application, we show that a simple principal pivot method applied to th...

متن کامل

Characterizations of optimal scalings of matrices

A scaling of a non-negative, square matrix A .. 0 is a matrix of the form DAD-I, where Dis a non~negatjve. non-singular, diagonal, square matrix. For a non.-negative, rectangular matrix B .. 0 we define a scaling to be a matrix CBEI where C and E are non-negative, non-singular, diagonal, square matrices of the corresponding dimension. (For square matrices the latter definition allows more scali...

متن کامل

New characterizations of row sufficient matrices

Article history: Received 29 September 2008 Accepted 6 January 2009 Available online 14 February 2009 Submitted by R.A. Brualdi Dedicated to the memory of a great scholar and a valued friend, Professor David Gale. AMS classification: 90C20 90C33 15A39 15A63

متن کامل

Algebraic and Geometric Characterizations of Double-Cross Matrices of Polylines

We study the double-cross matrix descriptions of polylines in the two-dimensional plane. The double-cross matrix is a qualitative description of polylines in which exact, quantitative information is given up in favour of directional information. First, we give an algebraic characterization of the double-cross matrix of a polyline and derive some properties of double-cross matrices from this cha...

متن کامل

Two characterizations of matrices with the Perron-Frobenius property

Two characterizations of general matrices for which the spectral radius is an eigenvalue and the corresponding eigenvector is either positive or nonnegative are presented. One is a full characterization in terms of the sign of the entries of the spectral projector. In another case, different necessary and sufficient conditions are presented that relate to the classes of the matrix. These charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1995

ISSN: 0024-3795

DOI: 10.1016/0024-3795(94)00006-9